4,020 research outputs found

    Fiber-Cavity-Based Optomechanical Device

    Full text link
    We describe an optomechanical device consisting of a fiber-based optical cavity containing a silicon nitiride membrane. In comparison with typical free-space cavities, the fiber-cavity's small mode size (10 {\mu}m waist, 80 {\mu}m length) allows the use of smaller, lighter membranes and increases the cavity-membrane linear coupling to 3 GHz/nm and quadratic coupling to 20 GHz/nm^2. This device is also intrinsically fiber-coupled and uses glass ferrules for passive alignment. These improvements will greatly simplify the use of optomechanical systems, particularly in cryogenic settings. At room temperature, we expect these devices to be able to detect the shot noise of radiation pressure.Comment: 4 pages, 3 figures; the following article has been submitted to Applied Physics Letter

    A cascade of magnetic field induced spin transitions in LaCoO3

    Full text link
    We present magnetization and magnetostriction studies of the insulating perovskite LaCoO3 in magnetic fields approaching 100 T. In marked contrast with expectations from single-ion models, the data reveal two distinct first-order spin transitions and well-defined magnetization plateaux. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co3+ ions. These findings strongly suggest collective behavior induced by strong interactions between different electronic -- and therefore spin -- configurations of Co3+ ions. We propose a model of these interactions that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data.Comment: 5 pages + supplementary materials, 5 figure

    Grapevine xylem sap enhances biofilm development by Xylella fastidiosa

    Get PDF
    Xylella fastidiosa is able to form biofilms within xylem vessels of many economically important crops. Vessel blockage is believed to be a major contributor to disease development caused by this bacterium. This report shows that Vitis riparia xylem sap increases growth rate and induces a characteristic biofilm architecture as compared with biofilms formed in PD2 and PW media. In addition, stable cultures could be maintained, frozen and reestablished in xylem sap. These findings are important as xylem sap provides a natural medium that facilitates the identification of virulence determinants of Pierce's diseas
    • …
    corecore